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Abstract. The amplitude for 4 interacting reggeized gluons is studied in the high-colour limit. The leading
order amplitude is explicitly shown to reduce to a pair of reggeons, i.e to a single BFKL pomeron. The
next-to-leading order diffractive amplitude is found to split into a double pomeron exchange and triple
pomeron contribution. The obtained three-pomeron vertex is different from the originally proposed in [2].

1 Introduction

The system of four reggeized gluons has been studied in
detail by J. Bartels [1] and J. Bartels and M. Wuesthoff
[2] for the realistic case of the number of colours N = 3.
The results are quite complicated because of the inter-
connection between many different colour channels. The
amplitudes obey a system of coupled integral equations
for which the inhomogeneous term is provided by a part
which is supposed to reduce to a pair of reggeons (the
“reggeizing piece”) coupled to the non-reggeizing piece by
a transitional vertex. This vertex presents some nice fea-
tures: it is symmetric in all the gluons, infrared stable,
conformal invariant [3] and vanishes if any of the external
momenta goes to zero. However its definition is rather du-
bious: in fact to obtain it in the form presented in [2] it
was assumed that a pair of reggeized gluons may combine
into a single reggeized gluon not only in the adjoint rep-
resentation but also in other ones, which does not agree
with the corresponding BFKL equation.

In this note we study the same problem under the sim-
plifying assumption N → ∞. As we already stated in [4],
in the leading approximation, the amplitude for any num-
ber of reggeized gluons reduces to the one for only a pair
of them, i.e to a BFKL pomeron. In the language of [1,
2] this means that the non-reggeizing piece is down by
at least 1/N as compared to the reggeizing piece for the
leading colour configuration (a cylinder in the picture in
which the gluon is represented by a qq̄ line). We demon-
strate this fact in some detail for the triple discontinuity
of the 4-gluon amplitude in Sect. 2.

As a result, a possibility opens up to study the com-
plicated Bartels system for different colour channel am-
plitudes by perturbation in 1/N starting from the fully
reggeizing piece in the leading approximation. In this man-
ner one arrives at a uniquely defined transitional vertex
which is different from [2], although it preserves some of
its good features. In particular, it is also infrared stable
and vanishes for any of the external momenta going to

zero. Apart from this, a new contribution arises which
corresponds to a direct coupling of two pomerons to a qq̄
loop. It has an eikonal form for fixed transversal dimen-
sion of the loop. This fact was also conjectured in [4]. Thus
the N → ∞ approach allows to uniquely separate contri-
butions from the double pomeron exchange and the triple
pomeron coupling, which remain hidden in the transitional
vertex of [2].

Technically the derivation presented in this paper fol-
lows [1,2], the difference only being in taking N → ∞,
which leads to drastic simplifications in both the classifi-
cation of amplitudes and equations for them.

2 The 4 gluon system at N → ∞
2.1 The 2 gluon system

The results for 2 gluons are well-known and are not sen-
sitive for the N → ∞ limit. We only list here the main
formulas to be used in the following. In our notations we
try to follow [1,2].

In the lowest (zero) order approximation the 2 gluon
amplitude (actually its discontinuity Mellin transformed
to the complex angular momentum j) is given by the qq̄
loop with the two gluons attached to it in all possible ways
(4 diagrams in all). Their colour indeces a1 and a2 enter
into the colour trace Tr{ta1ta2} = (1/2)δa1a2 , where ta
is the colour of the quark. Separating this trace and the
coupling g2 we write the zero order contribution as

D20(k1, a1, k2, a2) = (1/2)δa1a2g
2 (f(0, k1 + k2)

+f(k1 + k2, 0) − f(k1, k2)
−f(k2, k1)) (1)

Here f(k1, k2) is the contribution from the diagram with
the gluon 1 attached to q and the gluon 2 attached to
q̄. Assuming that the external particle is colourless (the
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photon or “onium”) we have f(k1, k2) = f(k2, k1). We
define a vacuum colour state of two gluons by its colour
wave function

|0〉 = (1/N)δa1a2 (2)

Then we find a projection of the qq̄ loop onto this state
from (1)

〈D20|0〉 =
N2 − 1

N
g2(f(0, 0) − f(k1, k2))

' g2N(f(0, 0) − f(k1, k2)) ≡ D20(1) (3)

In the last notation, to be extensively used in the follow-
ing, only the number of the gluon whose momentum acts
as one of the variables is indicated, the other momentum
determined from the conservation law (e.g. k2 = −k1 for
the forward amplitude).

The full 2-gluon amplitude D2 satisfies the vacuum
channel BFKL equation

S20D2 = D20 + g2NV12D2 (4)

where S20 is the 2 gluon “free” Schroedinger operator for
the energy 1 − j

S20 = j − 1 − ω(1) − ω(2) (5)

ω(k) is the gluon Regge trajectory (see e.g [5]) and V12 is
the BFKL interaction with the kernel

V (1, 2; 1′, 2′) =
k2
1k

′2
2 + k2

2k
′2
1

k′2
1 k′2

2 (k1 − k′
1)2

− (k1 + k2)2

k′2
1 k′2

2
(6)

Our aim in this section is to demonstrate that, to the
leading order in N , the 4 gluon amplitude is reduced to
the 2 gluon amplitude D2, which is assumed to be known
as the solution to (4). However before we go to 4 gluons
we have to study the 3 gluon case.

2.2 The 3 gluon system

Still at this level no simplifications occur in the high-colour
limit, so that the results can be borrowed from [1,2]. Three
gluons may combine either into a fully symmetric colour-
less state (d-coupling) or into a fully antisymmetric one
(f -coupling). In the high colour limit it is more conve-
nient to use their combination

ha1a2a3 = da1a2a3 + ifa1a2a3 (7)

cyclic symmetric in the gluons 1,2 and 3 and with the
properties

h∗
a1a2a3

= ha2a1a3∑
cd

h∗
acdhbcd = δab2N(1 − 2/N2)

∑
cd

hacdhbcd = −δab(4/N) (8)

Fig. 1. The transition from 2 to 3 gluons

Normalizing, we introduce two colour wave functions

|123〉 =
1√
2N3

ha1a2a3 , |213〉 =
1√
2N3

ha2a1a3 (9)

which are orthogonal in the limit N → ∞, due to (8).
They correspond to the three gluons lying on the surface
of a cylinder in a sequence 123 or 213 in the direction of the
quark loop. Since each pair of the gluons is in the adjoint
representation, the interaction will not change the colour
configuration. So the equations for the 3 gluon amplitude
in the two colour states |123〉 and |213〉 decouple.

To set up these equations we need their zero-order
terms. They are provided by the quark loop with 3 glu-
ons attached to it in all possible ways (8 diagrams). The
colour factor is given by the trace

Tr{ta1ta2ta3} = (1/8)ha1a2a3

if the gluons run in the order 123 along the quark line.
The rest of the contribution is given by the same function
f as in (1), in which the momenta of the gluons attached
to the same line (i.e the quark line or the antiquark line)
sum together and the overall sign is given by (−1)nq where
nq is the number of gluons attached to the quark line.
Projecting onto the states (9) we find

D
(123)
30 = −D

(213)
30

= g
√

N/8(D20(2) − D20(1) − D20(3)) (10)

In the 3 gluon equation, apart from the inhomogeneous
term (10), an aditional contribution appears coming from
possible transitions from 2 to 3 gluons (Fig. 1). These tran-
sitions are accomplished by the vertex K2→3 introduced
by J. Bartels [6]:

K2→3 = ig3fa′
1a1cfca2dfda3a′

3W (1, 2, 3; 1′3′) (11)

for the transition of two gluons (k′
1, a

′
1) and (k′

3, a
′
3) into

three gluons (k1, a1), (k2, a2) and (k3, a3). The kernel W
is symmetric in the gluons 1 and 3 and can be expresed
through the BFKL kernel as

W (1, 2, 3; 1′3′) = V (2, 3; 1′ −1, 3′)−V (1+2, 3; 1′3′) (12)

In the following one of the pairs of final gluons 12 or 23
will have a definite total colour. As a result the prefactor
in (11) can be simplified to

ig3T (12)δa1a′
1
fa2a3a′

3



M. Braun: The system of four reggeized gluons and the three-pomeron vertex in the high colour limit 323

or to
ig3T (23)δa3a′

3
fa′

1a1a′
2

for the two mentioned cases, respectively, where T is the
total colour in each case (−N for the colourless state and
−N/2 for the adjoint state). Projecting onto the state
|123〉 we find a contribution

D
(123)
2→3 = g3

√
N3/8W (1, 2, 3; 1′3′) ⊗ D2(1′, 3′)

≡ g3
√

N3/8W2(1, 2, 3; 1′3′) (13)

Here the symbol ⊗ means integration over primed vari-
ables with the weight (2π)−3δ2(1 + 2 + 3 − 1′ − 3′). This
integration and the function D2(1′, 3′) are implicit in the
abbreviated notation in the second equality (the subindex
2 shows that it is the function D2 which should be inte-
grated with the kernel W ).

The complete equation for the |123〉 colour state is thus

S30D
(123)
3 = D

(123)
30 + D

(123)
2→3

+(1/2)g2N(V12 + V23 + V31)D3 (14)

The operator S30 is a natural generalization of (5) to 3
gluons. The factor 1/2 in front of the interaction part is
due to the fact that all three gluons are now in the adjoint
representation together with their neighbours.

The equation for the |213〉 state has opposite signs for
its inhomogeneous parts. Therefore we find

D
(213)
3 = −D

(123)
3 (15)

The seemingly complicated equation (14) can however
be easily solved. As shown in [1] its full solution is simply
the zero-order term with all D20 substituted by the BFKL
pomerons D2 (“the reggeized zero order term”):

D
(123)
3 = −D

(213)
3 = g

√
N/8(D2(2)−D2(1)−D2(3)) (16)

This fact can be demonstrated by a direct substitution. We
shall derive it in a different manner, using the idea that
a pair of reggeized gluons in the adjoint representation
combines in a single reggeized gluon, presented in [4]. This
allows to easily generalize the derivation to the 4 gluon
case.

Consider a 3 gluon equation with a zero-order term
D20(1)

S30D
(1)
3 = D20(1) + F

(1)
3

+(1/2)g2N(V12 + V23 + V31)D
(1)
3 (17)

with a certain additional inhomogeneous term F
(1)
3 . As

shown in [4], the solution to (17) will be given by

D
(1)
3 = D2(1) (18)

provided we choose

F
(1)
3 = −(1/2)g2N(W2(2, 3, 1) + W2(3, 2, 1)) (19)

(see definition (13)).

Indeed, put (18) into (17). The interaction V23 gives

(1/2)g2NV23D2(1) = (ω(2 + 3) − ω(2) − ω(3))D2(1)

(“the bootstrap relation”, [7]) and thus converts the op-
erator S30(1, 2, 3) into S20(1, 2 + 3). The two other inter-
action terms give explicitly

(1/2)g2N(V (1, 2; 1′, 2′) ⊗ D2(1′, 2′ + 3) + V (3, 1; 3′, 1′)
⊗ D2(1′, 2 + 3′)) (20)

On the other hand, using (12), the term F
(1)
3 has the form

F
(1)
3 = −(1/2)g2N(V (3, 1; 2′ − 2, 1′) ⊗ D2(2′, 1′)

−V (2 + 3, 1; 2′, 1′) ⊗ D2(2′, 1′)
+V (2, 1; 3′ − 3, 1′) ⊗ D2(3′, 1′)
−V (3 + 2, 1; 3′, 1′) ⊗ D2(3′, 1′)) (21)

Taking as integration variables 3′ = 2′ −2 in the first term
in (21) and 2′ = 3′−3 in the third, we find that these terms
cancel the second and first terms in (20), respectively. The
second and fourth terms in (21) give in the sum

g2NV (1, 2 + 3; 1′, 2′) ⊗ D2(1′, 2′)

so that (17) becomes

S20(1, 2 + 3)D2(1, 2 + 3) = D20(1, 2 + 3)
+g2NV1,2+3D2(1, 2 + 3)

which is evidently true.
The described procedure corresponds to combining two

reggeized gluons 2 and 3 in the adjoint representation into
a single reggeized gluon with the momentum 2 + 3. For it
to work, it is evidently necessary that the zero order term
be a function of only the sum 2+3 and also that a certain
inhomogeneous term (19) be present which describes the
necessary contributions from the transitions from 2 to 3
gluons.

Now we repeat this exercise with zero-order terms
D20(2) and D20(3) and find two more solutions D

(2)
3 =

D2(2) and D
(3)
3 = D2(3) which require additional inhomo-

geneous terms F
(2)
3 and F

(3)
3 , respectively, obtained from

(19) by permutations of 123 to 231 and 312. Taking the
combination (16) of these solutions we find that the addi-
tional inhomogeneous term to be added is

g
√

N/8(F (2)
3 − F

(1)
3 − F

(3)
3 ) = g3

√
N3/8W2(1, 2, 3)

which is precisely the term we have in (14) for the 3-gluon
amplitude. Therefore (16) is indeed its solution.

2.3 The 4-gluon system

On the 4 gluon level simplifications due to N → ∞ become
essential. At zero-order the 4 gluon amplitude is given by
the quark loop with 4 gluons attached to it in all possible
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ways (16 diagrams). For a given order of gluons along the
quark line, say, 1234, the cyclic symmetric colour trace is

Tr{ta2ta2ta3ta4} = (1/8)ha1a2bha3a4b

+(1/4N)δa1a2δa3a4 (22)

At N → ∞ we neglect the second term and the sum
ha1a2bha3a4b becomes cyclic symmetric in the gluons. It
defines a colour state of 4 gluons

|1234〉 =
1

2N2 ha1a2bha3a4b (23)

corresponding to the gluons lying on the surface of a cylin-
der in the order 1234 and in the adjoint representation
with their neighbours. Other states are obtained from this
by permutations of 234. In the limit N → ∞ they are or-
thonormalized. Projecting the quark loop onto these states
we find

D
(1234)
40 = D

(4321)
20 (24)

= (1/4)g2N(D20(1) + D20(4) − D20(1 + 4))

D
(2134)
40 = D

(4312)
20 = (1/4)g2N(D20(2) + D20(3)

−D20(1 + 2) − D20(1 + 3)) (25)

Interactions between the gluons do not change their
overall colour state. Indeed, interactions between neigh-
bour gluons are diagonal in colour since neighbours are
all in the adjoint representation. Interactions across the
cylinder (e.g. 13 in the state |1234〉) are down by 1/N and
can be neglected in the leading approximation. Therefore
at N → ∞ the complicated Bartels system for the 4 gluon
amplitudes reduces to 4 decoupled equations for colour
configurations appearing in (24) and (25). Moreover, one
finds that the amplitudes with the inverse order of gluons
(e.g. 1234 and 4321) are equal. As a result we arrive at
only two different equations for colour states |1234〉 and
|2134〉.

To set up these equations we need to find contributions
from transitions into the 4 gluon state from 2- and 3-gluon
states. The transition from 2 to 4 gluons corresponds to
a single diagram, shown in Fig. 2. It is accomplished by a
vertex similar to (11)

K2→4 = −g2fa′
1a1cfca2dfda3efea4a′

4W (1, 2 + 3, 4; 1′, 4′)
(26)

If gluons 12 and 34 have a definite total colour T the
prefactor in (26) simplifies to

−g4T (12)T (34)δa1a′
1
δa2a3δa4a′

4

For the amplitudes in the states indicated in (24) and (25)
we have T (12) = T (34) = −N/2. Projecting (26) onto these
states we obtain the contribution to the state |1234〉 (and
|4321〉)

D
(1234)
2→4 = −(1/4)g4N2W2(1, 2 + 3, 4) (27)

Fig. 2. The transition from 2 to 4 gluons

Fig. 3. The transition from 3 to 4 gluons

The contribution from the transition 2 to 4 to the states
|2134〉 and |4312〉 turns out to be zero.

Transitions from 3 to 4 gluons are described by four
diagrams shown in Fig. 3 and are accomplished by the
vertex K2→3 described above. Projecting onto the states
|1234〉 and |2134〉 we find the following contributions. For
|1234〉

D
(1234)
3→4 = g3

√
N3/8(W (2, 3, 4; 2′, 4′) ⊗ D

(124)
3 (1, 2′, 4′)

+W (1, 2, 3; 1′, 3′) ⊗ D
(134)
3 (1′, 3′, 4)) (28)

and for |2134〉

D
(2134)
3→4 = −g3

√
N3/8(W (1, 2, 4; 1′, 4′) ⊗ D

(134)
3 (1′, 3, 4′)

+W (1, 3, 4; 1′, 4′) ⊗ D
(124)
3 (1′, 2, 4′)) (29)

Thus we find the equations for the two independent 4
gluon amplitudes in the form

S40D
(1234)
4 = D

(1234)
40 + D

(1234)
2→4 + D

(1234)
3→4 (30)

+(1/2)g2N(V12 + V23 + V34 + V41)D
(1234)
4

and

S40D
(2134)
4 = D

(2134)
40 + D

(2134)
3→4 (31)

+(1/2)g2N(V21 + V13 + V34 + V42)D
(2134)
4
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We are going to demonstrate that solutions to these equa-
tions are exactly given by their zero-order terms D40 in
which D20 are substituted by the BFKL pomerons D2,
that is

D
(1234)
4 = (1/4)g2N(D2(1) + D2(4) − D2(1 + 4)) (32)

and

D
(2134)
4 = (1/4)g2N(D2(2) + D2(3)

−D2(1 + 2) − D2(1 + 3)) (33)

To do it we apply the same trick as used in the 3 gluon
case. Namely we shall find inhomogeneous terms neces-
sary to combine 4 gluons into 2 for each term in the zero
order expressions (24) and (25) separately. Then we shall
sum the thus constructed pomerons into the combinations
(32) and (33) and check that the resulting inhomogeneous
terms will coincide with the terms D2→4 and D3→4 in
(30) and (31). Since the derivation closely follows the 3
gluon case, we omit all the details and discuss only the
inhomogeneous terms needed at each step.

Let us start with the colour state |1234〉. First consider
an equation with a zero-order term D20(1) ≡ D20(1, 2 +
3+4). If we want to solve it by D

(1)
4 = D2(1, 2+3+4) the

three gluons 2,3 and 4 have to combine into a single one
with the momentum k2 + k3 + k4. To achieve that we first
combine the gluons 2 and 3. According to our prescription
explained above, this needs an inhomogeneous term

−(1/2)g2N(W (2, 3, 4; 2′, 4′)

⊗D
(1)
3 (1, 2′, 4′) + W (3, 2, 1; 3′, 1′)

⊗D
(1)
3 (1′, 3′, 4)) (34)

where D
(1)
3 (1, 2, 3) = D2(1, 2+3). Then we want the gluon

2 + 3 to combine with gluon 4. This will add a new inho-
mogeneous term

−(1/2)g2N(W2(2 + 3, 4, 1) + W2(4, 2 + 3, 1)) (35)

With these inhomogeneous terms the solution to the 4
gluon equation can be easily shown to be D

(1)
4 = D

(1)
3 (1, 2+

3, 4) = D2(1, 2 +3 + 4). To abbreviate we denote

W (2, 3, 4; 2′, 4′) ⊗ D
(1)
3 (1, 2′, 4′) ≡ W

(1)
3 (2, 3, 4)

= W
(1)
3 (4, 3, 2) (36)

W (3, 2, 1; 3′, 1′) ⊗ D
(1)
3 (1′, 3′, 4) ≡ W

(1)
3 (3, 2, 1)

= W
(1)
3 (1, 2, 3) (37)

(the superscript (1) denotes the distinguished gluon in the
three gluon amplitude: D

(1)
3 (1, 2′, 4) = D2(1, 2′ + 4) etc.).

With this notation the total inhomogeneous term added
for the solution D

(1)
4 is

F
(1)
4 = −(1/2)g2N(W (1)

3 (2, 3, 4) + W
(1)
3 (3, 2, 1)

+W2(2 + 3, 4, 1) + W2(4, 2 + 3, 1)) (38)

Likewise for the solution D
(4)
4 = D2(4, 1 + 2 + 3) the nec-

essary inhomogeneous term is

F
(4)
4 = −(1/2)g2N(W (4)

3 (2, 3, 4) + W
(4)
3 (3, 2, 1)

+W2(2 + 3, 1, 4) + W2(1, 2 + 3, 4)) (39)

Finally we study the solution D
(14)
4 = D2(1 + 4, 2 +

3). To construct it we first combine the gluons 23 and
afterwards the gluons 14. The necessary inhomogeneous
term is found to be

F
(1)
14 = −(1/2)g2N(W (2)

3 (2, 3, 4) + W
(3)
3 (3, 2, 1)

+W2(4, 1, 2 + 3) + W2(1, 4, 2 + 3)) (40)

Now we combine the solutions D
(1)
4 , D

(4)
4 and D

(14)
4

into the combination (32). The resulting inhomogeneous
term is

F4 = −(1/8)g4N2(W (1)
3 (2, 3, 4)) + W

(4)
3 (2, 3, 4))

−W
(2)
3 (2, 3, 4)) + W

(1)
3 (3, 2, 1) + W

(4)
4 (3, 2, 1)

−W
(3)
3 (3, 2, 1) + 2W2(1, 2 + 3, 4)) (41)

Compare this with the inhomogeneous terms D2→4 and
D3→4 in (30). The last term in (41) evidently coincides
with D2→4. Putting the solution D

(123)
3 into the term

D3→4 we find a sum of functions W3 which exactly co-
incides with an analogous sum in (41). Thus we find that
(32) is indeed the solution to (30).

Now we pass to the colour state |2134〉. Again we
first construct four solutions D

(2)
4 = D2(2, 1 + 3 + 4),

D
(3)
4 = D2(3, 1 + 2 + 4), D

(12)
4 = D2(1 + 2, 3 + 4) and

D
(13)
4 = D2(1+3, 2+4). Additional inhomogeneous terms

necessary to combine 4 gluons into 2 gluons are found to
be (symmetrized in the two possible orders of this proce-
dure)

F
(2)
4 = −(1/4)g2N(W (2)

3 (3, 4, 2) + 2W
(2)
3 (1, 3, 4)

+W
(2)
3 (3, 1, 2) + W2(1, 3 + 4, 2) + W2(3 + 4, 1, 2)

+W2(4, 1 + 3, 2) + W2(1 + 3, 4, 2)) (42)

F
(3)
4 = −(1/4)g2N(W (3)

3 (2, 1, 3) + 2W
(3)
3 (1, 2, 4)

+W
(3)
3 (2, 4, 3) + W2(1, 2 + 4, 3) + W2(2 + 4, 1, 3)

+W2(4, 1 + 2, 3) + W2(1 + 2, 4, 3)) (43)

F
(12)
4 = −(1/4)g2N(W (3)

3 (3, 4, 2) + W
(4)
3 (1, 3, 4)

+W
(1)
3 (1, 2, 4) + W

(2)
3 (3, 1, 2) + W2(3, 4, 1 + 2)

+W2(3 + 4, 1, 2) + W2(4, 3, 1 + 2)
+W2(1, 2, 3 + 4)) (44)

F
(13)
4 = −(1/4)g2N(W (2)

3 (3, 4, 2) + W
(1)
3 (1, 3, 4)

+W
(4)
3 (1, 2, 4) + W

(3)
3 (3, 1, 2) + W2(2, 4, 1 + 3)

+W2(2 + 4, 1, 3) + W2(1, 3, 2 + 4)
+W2(4, 2, 1 + 3)) (45)
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Forming the combination (33) we find the total inhomo-
geneous term

F4 = (1/2)g2(F (2)
4 + F

(3)
4 − F

(12)
4 − F

(13)
4

= −(1/16)g4N2(2W
(2)
3 (1, 3, 4) + 2W

(3)
3 (1, 2, 4)

−W
(1)
3 (1, 2, 4) − W

(1)
3 (1, 3, 4) − W

(4)
3 (1, 2, 4)

−W
(4)
3 (1, 3, 4) + W2(2, 1 + 3, 4) + W2(1, 3 + 4, 2)

+W2(3, 1 + 2, 4) + W2(1, 2 + 4, 3) − W2(1 + 2, 3, 4)
−W2(1, 2, 3 + 4) − W2(4, 2, 1 + 3)
−W2(1, 3, 2 + 4)) (46)

On the other hand, the existing inhomogeneous term (29)
can be rewritten using (16) as

D
(2134)
3→4 = −(1/8)g4N2(W (2)

3 (1, 3, 4) − W
(1)
3 (1, 3, 4)

−W
(4)
3 (1, 3, 4) + W

(3)
3 (1, 2, 4) − W

(1)
3 (1, 2, 4)

−W
(4)
3 (1, 2, 4)) (47)

At first sight they are different, since terms 3 → 4 do not
coincide and terms 2 → 4 are absent in (47). However,
functions of the type W

(1)
3 (1, 3, 4) can in fact be expressed

in terms of W2.
Indeed we have, by definition and using (12),

W
(1)
3 (1, 3, 4) = (V (3, 1; 4′ − 4, 1′) − V (3 + 4, 1; 4′, 1′))

⊗D2(1′, 2 + 4′) (48)

Shifting the integration variables we have

V (3, 1; 4′ − 4, 1′) ⊗ D2(1′, 2 + 4′)
= V (3, 1; 3′ − 2 − 4, 1′) ⊗ D2(1′, 3′)
= W2(2 + 4, 3, 1) + V (2 + 3 + 4, 1; 3′, 1′) ⊗ D2(3′1′)

V (3 + 4, 1; 4′, 1′) ⊗ D2(1′, 2 + 4′)
= V (3 + 4, 1; 2′ − 2, 1′) ⊗ D2(1′, 2′)
= W2(2, 3 + 4, 1) + V (2 + 3 + 4, 1; 3′, 1′) ⊗ D2(3′, 1′)

Subtracting we get an identity

W
(1)
3 (1, 3, 4) = W2(2 + 4, 3, 1) − W2(2, 3 + 4, 1) (49)

and interchanging 1 and 4

W
(4)
3 (1, 3, 4) = W2(1 + 2, 3, 4) − W2(2, 1 + 3, 4) (50)

Using these identities we find that all terms with W2
in (46) combine into

−W
(1)
3 (1, 2, 4)−W

(1)
3 (1, 3, 4)−W

(4)
3 (1, 2, 4)−W

(4)
3 (1, 3, 4)

which together with the rest of the terms makes (46) iden-
tical to (47).

Thus we have proven that in the leading order in 1/N
the solution to the 4 gluon equation is exactly given by
(32) and (33) and thus reduces to single BFKL pomerons.

3 Next-to-leading order in 1/N

3.1 Equation for the two-pomeron amplitude

At next-to-leading order the colour classification of 4 gluon
states looses its cyclic symmetry, so that one has to return
to the standard description in terms of colour states of the
two subsystems of gluons 12 and 34. We shall be interested
in the state which is a color singlet in both subsystems,
with a colour wave function

|0〉 = (1/N2)δa1a2δa3a4 (51)

This state is absent in the leading approximation in 1/N
and first appears at the next-to-leading order. It is this
state that corresponds to the coupling of the projectile
with two pomerons and enters the diffractive processes.
Projecting the quark loop onto the state (51) we find the
corresponding zero-order amplitude:

D
(0)
40 = (1/2)g2(D20(1) + D20(2) + D20(3) + D20(4)

−D20(1 + 2) − D20(1 + 3) − D20(1 + 4)) (52)

It is evidently down by a factor 1/N as compared to the
leading order amplitudes D

(1234)
4 and D

(2134)
4 .

The interaction between gluons in the state |0〉 may
lead them either to the same state (terms with V12 and
V34) or to the state in which subsystems 12 and 34 are
both in the antisymmetric adjoint representation (the f
part of h). The amplitude for the latter state is already
known (in the leading order in 1/N). Therefore transitions
from the 4 gluons in the adjoint state into state |0〉 will
serve as an additional inhomogeneous term D

(0)
4→4 in the

equation for the amplitude D
(0)
4 . Since no other 4 colour

state will enter in the next-to- leading order, the resulting
equation for D

(0)
4 will again decouple and have the form

S40D
(0)
4 = D

(0)
40 + D

(0)
2→4 + D

(0)
3→4

+D
(0)
4→4 + g2N(V12 + V34)D

(0)
4 (53)

The zero-order term D
(0)
40 is given by (52). The con-

tributions from the transitions 2 → 4 and 3 → 4 are de-
scribed by the same diagrams of Figs. 2 and 3, although
with new colour factors. One easily finds them to be

D
(0)
2→4 = −g4NW2(1, 2 + 3, 4) (54)

and

D
(0)
3→4 = g3

√
2N(W (1, 2, 3; 1′3′) ⊗ D

(134)
3 (1′, 3′, 4)

−W (1, 2, 4; 1′, 4′) ⊗ D
(134)
3 (1′, 3, 4′)

+W (2, 3, 4; 2′, 4′) ⊗ D
(124)
3 (1, 2′, 4)

−W (1, 3, 4; 1′, 4′) ⊗ D
(124)
3 (1′, 2, 4′)) (55)

where the amplitude D
(123)
3 is given by (16).

The terms 4 → 4 come from 4 leading colour states
|1234〉, |2134〉, |4321〉 and |4312〉 as a result of interac-
tions of gluons belonging to different subsystems, that is
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upon action of K
(13)
2→2, K

(14)
2→2, K

(23)
2→2 and K

(13)
2→2, where, for

example
K

(13)
2→2 = −g2(T1T3)V13 (56)

Contributions from interactions of gluons across the cylin-
der (e.g of 1 and 3 in the configuration |1234〉) are cal-
culated trivially and we obtain in this manner a part of
D

(0)
4→4

−g2((V13 + V24)D
(1234)
4 + (V23 + V14)D

(2134)
4 ) (57)

Calculating the contribution from the interaction be-
tween adjacent gluons needs some care, since its leading
order result is evidently zero. Suppose we want to find
〈1234|K(23)

2→2|0〉. For the initial state we can take just as
well a cyclic symmetric combination

(1/2N2)(ha1a2bha3a4b + (2/N)δa1a2δa3a4)

since all (12)(34) states except the antisymmetric adjoint
one give zero. Using the cyclic symmetry we rewrite it as

(1/2N2)(ha2a3bha4a1b + (2/N)δa2a3δa4a1)

The first term corresponds to gluons 23 in the adjoint
representation, the second – in the colourless one. Acting
on this, operator −(T2T3) gives

(1/2N2)(ha2a3bha4a1b + N(2/N)δa2a3δa4a1)
= (1/4N2)(ha1a2bha3a4b + (1/2N2)δa1a2δa3a4

+δa2a3δa4a1)

Projecting onto the state |0〉 we finally obtain

〈1234|K(23)
2→2|0〉 = (1/2)g2V23

An identical contribution comes from the state |4321〉.
Calculating in this manner all adjacent interactions we

find the second half of D
(0)
4→4

g2((V23 + V14)D
(1234)
4 + (V13 + V24)D

(2134)
4 ) (58)

Summing (57) and (58) we finally find

D
(0)
4→4 = g2(V23 +V14 −V13 −V24)(D

(1234)
4 −D

(2134)
4 ) (59)

In (53) the three inhomogeneous terms D
(0)
2→4, D

(0)
3→4

and D
(0)
4→4 are each the result of some operator applied to

the BFKL pomeron, since amplitudes D3 and D4 entering
them are, in fact, linear combinations of BFKL pomerons.
Therefore following [2] we can present

D
(0)
2→4+D

(0)
3→4+D

(0)
4→4 = Z(1, 2, 3, 4; 1′2′)⊗D2(1′, 2′) (60)

The kernel Z describes the coupling of the initial pomeron
attached to the quark loop (the projectile) to the two final
ones. It is the three-pomeron vertex. In the following we
shall present a more explicit form of Z.

In terms of Z we write the equation for D
(0)
4 as follows

S40D
(0)
4 = D

(0)
40 + ZD2 + g2N(V12 + V34)D

(0)
4 (61)

Its solution may evidently be split into two parts: a di-
rect one and the triple pomeron part, which separately
satisfy this equation with the inhomogeneous terms D

(0)
40

and ZD2, respectively. Both parts can easily be found ex-
plicitly due to the fact that the operator acting in (61) is
evidently a sum of two independent parts for subsystems
12 and 34.

3.2 The direct contribution

To solve the equation for the direct part we represent the
quark loop diagrams in (1) as a Fourier transform:

g2Nf(k) =
∫

d2rρ(r)eikr (62)

Function ρ(r) evidently describes the colour density cre-
ated by the qq̄ pair with a transverse dimension r. Using
this representation one finds that the term D

(0)
40 (Eq. (52))

can be represented as

D
(0)
40 = (1/4)g2

∫
d2rρ(r)

4∏
j=1

(eikjr − 1) (63)

It thus factorizes in the gluons at fixed r.
Accordingly we can start with an equation for the di-

rect part at fixed r:

S40D
(r)
4 =

4∏
j=1

(eikjr − 1) + g2N(V12 + V34)D
(r)
4 (64)

Evidently in this equation subsystems 12 and 34 decouple.
The solution to (64) is given by the convolution in the
“energy” 1 − j of two independent BFKL pomerons

D
(r)
4 =

∫
dj12dj34δ(j − j12 − j34)

D
(r)
2,j12

(1, 2)D(r)
2,j34

(3, 4) (65)

Here the pomeron D
(r)
2,j (1, 2) satisfies the equation

S20D
(r)
2,j =

2∏
j=1

(eikjr − 1) + g2NV12D
(r)
2,j (66)

and similarly for the second pomeron.
The final direct amplitude will result upon integration

over r:
D

(dir)
4 = (1/4)g2

∫
d2ρ(r)D(r)

4 (67)

This contribution exactly corresponds to two pomerons
directly coupled to the quark loop. As we observe, this
coupling factorizes at fixed interquark distance. The cor-
responding amplitude has thus an eikonal form at fixed r.
This feature was first established in [4] where it was also
generalized to any number of pomerons directly coupled
to the quark loop.
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3.3 The three-pomeron vertex

The triple pomeron part can be written in terms of the
Green function of (61) as

D
(triple)
4 = G4(1, 2, 3, 4; 1′, 2′, 3′, 4′)

⊗Z(1′, 2′, 3′, 4′; 1′′, 2′′) ⊗ D2(1′′, 2′′) (68)

The Green function G4 is evidently a convolution in the
energy of two two-gluon (BFKL) Green functions

G4,j(1, 2, 3, 4; 1′, 2′, 3′, 4′) =
∫

dj12dj34δ(j − j12 − j34)

G2,j12(1, 2; 1′2′)G2,j34(3, 4; 3′, 4′) (69)

If the target part consists of two quark loops, analogous
to the projectile loop, then the final solution will be given
by two pomerons D2 for subsystems 12 and 34 attached
to the three-pomeron vertex Z acting on the pomeron D2
coming from the projectile.

The three-pomeron vertex Z is implicitly determined
by its definition (60), (54), (55) and (59) for the terms
D2→4, D3→4 and D4→4 and expressions (16), (32) and (33)
for the leading order solutions D3 and D4. Our aim here is
to obtain an explicit expression for Z which will facilitate
the study of its infrared behaviour and comparison with
the symmetric vertex introduced in [2] for N = 3.

We start with the term D
(0)
3→4. Putting (16) into (55)

we find terms of two types. Terms of the type W
(3)
3 (1, 2, 3)

can all be reduced to functions W2. Taking into account
that only terms symmetric under the interchange 1 and 2
and/or 3 and 4 contribute, we find for this part

D
(01)
3→4 = (1/2)g4N(W2(1 + 4, 2, 3) + W (1 + 3, 2, 4)

−2W (3, 1 + 2, 4) + (1234 → 4321) (70)

The second part of D
(0)
3→4 is formed by terms of the type

W
(1)
3 (2, 3, 4). Using (12) and the bootstrap relation we find

(1/2)g2NW
(1)
3 (2, 3, 4) = D2(1)(ω(2 + 3) + ω(3 + 4)

−ω(2 + 3 + 4) − ω(3)) (71)

As a result, the second part of D
(0)
3→4 turns out to be

D
(02)
3→4 = −g2D2(1)(ω(2 + 3) + ω(3 + 4) − ω(2 + 3 + 4)

−ω(3)) − (1234 → 2134) − (1234 → 3124)
−(1234 → 4123) (72)

To further simplify these expressions and also com-
pare them with [2] we express functions W2 for the total
momentum zero via the function G(k1, k2) = G(k2, k1)
introduced in [2]. For 1 + 2 + 3 = 0

g2NW2(1, 2, 3) = G(1 + 2, 2 + 3)
−D2(1 + 2)(ω(2) − ω(1 + 2))
−D2(2 + 3)(ω(2) − ω(2 + 3)) (73)

In terms of functions G, summing (70) and (72) we
find

D
(0)
3→4 = (1/2)g2(G(1, 2 + 4) + G(2, 1 + 4) + G(3, 1 + 4)

+G(4, 1 + 3) − 2G(1, 2) − 2G(3, 4)
−D2(1 + 3)(ω(2) + ω(3) − 2ω(1 + 3))
−D2(1 + 4)(ω(2) + ω(3) − 2ω(1 + 4))
+D2(1)(ω(1) + ω(3) − 2ω(1 + 4))
+D2(2)(ω(2) + ω(3) − 2ω(1 + 3))
+D2(3)(ω(2) + ω(3) − 2ω(1 + 3))
+D2(1)(ω(2) + ω(4) − 2ω(1 + 4))) (74)

This expression is not symmetric in gluons 12 nor in gluons
34. However the function D

(0)
4 is symmetric in both gluon

pairs. So we should symmetrize (74) in gluon pairs 12 and
34. The resulting symmetric expression is

D
(0)
3→4 = (1/4)g2(G(1, 2 + 3) + G(1, 2 + 4) + G(2, 1 + 3)

+G(2, 1 + 4) + G(3, 1 + 4) + G(3, 2 + 4)
+G(4, 1 + 3) + G(4, 2 + 3) − 4G(1, 2) − 4G(3, 4)

−D2(1 + 3)

(
4∑

i=1

ω(i) − 4ω(1 + 3)

)

−D2(1 + 4)

(
4∑

i=1

ω(i) − 4ω(1 + 4)

)

+D2(1)(2ω(1) + ω(3) + ω(4) − 2ω(1 + 3)
−2ω(1 + 4)) + D2(2)(2ω(2) + ω(3) + ω(4)
−2ω(1 + 3) − 2ω(1 + 4)) + D2(3)(2ω(3) + ω(1)
+ω(2) − 2ω(1 + 3) − 2ω(1 + 4))
+D2(1)(2ω(4) + ω(1) + ω(2) − 2ω(1 + 3)
−2ω(1 + 4))) (75)

Note that in this notation the term D
(0)
3→4 can be rewrit-

ten as

D
(0)
2→4 = −g2(G(1, 4) + D2(1)(ω(1) − ω(2 + 3))

+D2(4)(ω(4) − ω(2 + 3))) (76)

After symmetrization in 12 and 34 it becomes

D
(0)
2→4 = −(1/4)g2(G(1, 3) + G(1, 4) + G(2, 3) + G(2, 4)

+D2(1)(2ω(1) − ω(1 + 3) − ω(1 + 4))
+D2(2)(2ω(2) − ω(1 + 3) − ω(1 + 4))
+D2(3)(2ω(3) − ω(1 + 3) − ω(1 + 4))
+D2(4)(2ω(4) − ω(1 + 3) − ω(1 + 4))) (77)

We finally come to the term D
(0)
4→4. We put expressions

(32) and (33) for D
(1234)
4 and D

(2134)
4 into (59). Operator

V23+V14−V13−V24 is antisymmetric under the interchange
of 1 and 2 and/or 3 and 4. Since the two-pomeron state is
symmetric under these substitutions, only antisymmetric
parts of D

(1234)
4 and D

(2134)
4 give a nonzero contribution.
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Taking this into account we find

D
(0)
4→4 = (1/4)g4N(V23 + V14 − V13 − V24)

(D2(1 + 3) − D2(1 + 4)) (78)

Here we again meet with two different types of terms: with
the interaction between different gluons (e.g V13D2(1+4))
or within the same gluon (e.g. V13D2(1 + 3)).

The first type leads to a contribution

D
(01)
4→4 = (1/4)g4N((V13 + V24)D2(1 + 4)

+(V23 + V14)D2(1 + 3)) (79)

To reduce it to the expression of the same type as before
we use an identity, which is proven in the Appendix

V13D2(1 + 4) = W2(2 + 3, 1, 4) + W2(2, 3, 1 + 4)
−W2(2, 1 + 3, 4)
−W2(2 + 3, 0, 1 + 4) (80)

Introducing then functions G we find for this part

D
(01)
4→4 = (1/4)g2(G(1, 2 + 3) + G(1, 2 + 4) + G(2, 1 + 3)

+G(2, 1 + 4) + G(3, 1 + 4) + G(3, 2 + 4)
+G(4, 1 + 3) + G(4, 2 + 3) − G(1, 3)
−G(1, 4) − G(2, 3) − G(2, 4)
−2G(2 + 3, 1 + 4) − 2G(1 + 3, 2 + 4)
+D2(1)(ω(2 + 3) + ω(2 + 4) − ω(3) − ω(4))
+D2(2)(ω(1 + 3) + ω(1 + 4) − ω(3) − ω(4))
+D2(3)(ω(2 + 4) + ω(1 + 4) − ω(1) − ω(2))
+D2(4)(ω(1 + 3) + ω(2 + 3) − ω(1) − ω(2))

−(D2(1 + 3) + D2(1 + 4))
4∑

i=1

ω(i)) (81)

The second part of the contribution is

D
(02)
4→4 = −(1/4)g4N((V13 + V24)D2(1 + 3)

+(V23 + V14)D2(1 + 4)) (82)

It is much simpler. Application of the bootstrap relation
immediately gives

D
(02)
4→4 = (1/2)g2N

(
D2(1 + 4)

(
4∑

i=1

ω(i) − 2ω(1 + 4)

)

+D2(1 + 3)

(
4∑

i=1

ω(i) − 2ω(1 + 3)

))
(83)

The final three-pomeron vertex is obtained after sum-
ming (75), (77), (81) and (83). It is remarkable that all
terms involving functions D2(i) or D2(i + k) cancel and
the resulting expression contains only functions G:

ZD2 = (1/2)g2(G(1, 2 + 3) + G(1, 2 + 4)
+G(2, 1 + 3) + G(2, 1 + 4) + G(3, 1 + 4)
+G(3, 2 + 4) + G(4, 1 + 3) + G(4, 2 + 3)
−2G(1, 2) − 2G(3, 4) − G(1, 3) − G(1, 4)
−G(2, 3) − G(2, 4) − G(2 + 3, 1 + 4)
−G(1 + 3, 2 + 4)) (84)

The vertex Z itself can be easily extracted from this ex-
pression separating the operator which acts on D2.

One immediately observes that the found vertex is in-
frared stable. It is expressed via functions G, which are
explicitly infrared stable by construction (see [2]). More-
over one easily finds from (84) that the vertex Z goes to
zero if any of its external variables (1,2,3 or 4 in (84))
goes to zero. This means that it can be safely integrated
with two pomerons D2(1, 2) and D2(3, 4) which describe
its coupling to the two target colourless particles. By con-
struction it is symmetric in gluons 12 and 34 and under
the interchange 12 ↔ 34. Thus it satisfies all requirements
relevant from the physical point of view. However, as one
observes from (84), it is not fully symmetric in all the
gluons as the transitional vertex constructed in [2]. Re-
lated to this, it contains somewhat less terms than in [2]
(16 instead of 19) and with different coefficients. We shall
discuss the physical reason for this difference in the next
section.

4 Discussion

The study of the 4-gluon system at N → ∞ leads to a
very simple and physically expected picture. In the lead-
ing approximation the system reduces to a single BFKL
pomeron, the 4 gluons in the colour configuration of a
cylinder coalescing into a pair of gluons. In the next-
to-leading order the diffractive amplitude appears, which
clearly divides into a direct contribution (double pomeron
exchange), with the two pomerons directly coupled to the
quark loop, and a triple pomeron contribution, with a
single pomeron splitting into two pomerons by a three-
pomeron vertex.

The found three-pomeron vertex is different from the
one originally constructed by J. Bartels and M. Wuesthoff
in [2]. The reason is not related to the limit N → ∞, as
such, nor to any difference in the derivation of the ampli-
tudes, but to a different treatment of the 4-gluon ampli-
tude in the colour state |0〉. In [2] a contribution was sepa-
rated from this amplitude corresponding to the reggeized
zero-order term (52), i.e. a 2-gluon exchange term. As a
result in (53) new terms 4 → 4 appear which describe
transitions from the reggeizing to non-reggeizing pieces
in the same colour state |0〉 This naturally changes the
definition of the transitional vertex and explains the dif-
ference between our vertex and that of [2]. In a recent
paper [8] we have explicitly demonstrated that the double
pomeron exchange contribution (67) can be included into
the triple pomeron interaction, the resulting new triple
pomeron vertex coinciding with the one of [2] in the limit
N → ∞.

In our opinion, the assumption about the existence of
a reggeizing piece in the 4 gluon system in the state |0〉
is unnatural. Reggeization, say, of the term D20(1 + 2) in
(52) implies the existence of a colourless reggeon, identical
to the physical one. Reggeization of the term D20(1 + 3)
implies the existence of such a reggeon in the symmetric
representation of the highest dimension. These possibili-
ties are not supported by the BFKL equation for different
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colour states. In the N → ∞ approach the zero-order term
(52) does not reggeize into a single pomeron but rather
into two pomerons, thus leading to a well-defined and in-
tuitively expected double pomeron exchange contribution.
For these reasons we consider our definition of the three-
pomeron vertex (84) better accomodated to the standard
Regge-Gribov description of the diffractive amplitude, as
the original one in [2].

Acknowledgements. The author expresses his deep gratitude
to Prof. J. Bartels for illuminative discussions, which served as
a starting point for this study.

Appendix

Transformation of the term V13D2(1 + 4)

The term of interest is explicitly written as

V (1, 3; 1′, 3′) ⊗ D2(1′ + 4, 2 + 3′) = V (1, 3; 1′ − 4, 3′ − 2)
⊗ D2(1′, 2) = V (1, 3; 4′ − 4,−4′ − 2)
⊗ D2(4′,−4′) (85)

In the last equality we used the conservation law 1 + 2 +
3 + 4 = 0. The identity (12) can be rewritten, again, with
the conservation law taken into account, as

W (4, 1, 3; 4′, 1′) = V (1, 3; 4′ − 4, 1 + 3 + 4 − 4′)
−V (1 + 4, 3; 4′, 1 + 3 + 4 − 4′) (86)

Since 1 + 3 + 4 = −2, integrating (86) with D2(4′,−4′)
and comparing with (85) we find

V13D2(1 + 4) = (W (4, 1, 3; 4′, 1 + 3 + 4 − 4′)
+V (1 + 4, 3; 4′, 1 + 3 + 4 − 4′))
⊗D2(4′,−4′) (87)

Consider the two terms on the right-hand side sepa-
rately. Interchanging 3 and 4 in the first we find (3′ =
1 + 3 + 4 − 4′):

W (3, 1, 4 : 3′, 4′) ⊗ D2(4′, 3′ − 1 − 3 − 4)
= (V (1, 4; 3′ − 3, 4′) − V (1 + 3, 4, 3′, 4′))
⊗ D2(4′, 3′ − 1 − 3 − 4)
= (V (1, 4; 3′′ + 1 + 4, 4′)

−V (1 + 3, 4, 3′′ + 1 + 3 + 4, 4′))
⊗ D2(4′, 3′′) (88)

where 3′′ = 3′ − 1 − 3 − 4. Both terms can be expressed
via W , using (12). We obtain

W (−1 − 4, 1, 4 : 3′, 4′) + V (−4, 4; 3′4′)
−W (−1 − 3 − 4, 1 + 3, 4; 3′, 4′) − V (−4, 4; 3′, 4′))
⊗D2(4′, 3′) = W2(−1 − 4, 1, 4)
−W2(−1 − 3 − 4, 1 + 3, 4) (89)

The second term in (87) is transformed analogously

V (3, 1 = 4; 3′, 4′) ⊗ D2(4′, 3′ − 1 − 3 − 4)
= V (3, 1 + 4; 3′′ + 1 + 3 + 4, 4′)
⊗ D2(4′, 3′′)
= W2(−1 − 3 − 4, 3, 1 + 4)

+V (−1 − 4, 1 + 4; 3′, 4′)
⊗ D2(4′, 3′) (90)

Next we take into account that −1−4 = 2+3, −1−3−4 =
2 and that

V (2 + 3, 1 + 4; 3′, 4′) ⊗ D2(4′, 3′)
= −W2(2 + 3, 0, 1 + 4) (91)

Taking the sum of (89) and (90) we then obtain (80).
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